全國統一服務熱線
15953163210
當前位置:主頁 > 資訊中心 > 行業動態 >

變頻電源技術未來發展方向

文章出處:admin 人氣:發表時間:2019-03-30 21:24

        關注點一:功率半導體器件性能
        1998年,Infineon公司推出冷mos管,它采用“超級結”(Super-Junction)結構,故又稱超結功率MOSFET。工作電壓600V~800V,通態電阻幾乎降低了一個數量級,仍保持變頻速度快的特點,是一種有發展前途的高頻功率半導體電子器件。
        IGBT剛出現時,電壓、電流額定值只有600V、25A。很長一段時間內,耐壓水平限于1200V~1700V,經過長時間的探索研究和改進,現在IGBT的電壓、電流額定值已分別達到3300V/1200A和4500V/1800A,高壓IGBT單片耐壓已達到6500V,一般IGBT的工作頻率上限為20kHz~40kHz,基于穿通(PT)型結構應用新技術制造的IGBT,可工作于150kHz(硬變頻)和300kHz(軟變頻)。
        IGBT的技術進展實際上是通態壓降,快速變頻和高耐壓能力三者的折中。隨著工藝和結構形式的不同,IGBT在20年歷史發展進程中,有以下幾種類型:穿通(PT)型、非穿通(NPT)型、軟穿通(SPT)型、溝漕型和電場截止(FS)型。
        碳化硅Sic是功率半導體器件晶片的理想材料,其優點是:禁帶寬、工作溫度高(可達600℃)、熱穩定性好、通態電阻小、導熱性能好、漏電流極小、PN結耐壓高等,有利于制造出耐高溫的高頻大功率半導體電子元器件。
        可以預見,碳化硅將是21世紀最可能成功應用的新型功率半導體器件材料。

      關注點二:變頻電源功率密度
        提高變頻電源的功率密度,使之小型化、輕量化,是人們不斷努力追求的目標。電源的高頻化是國際電力電子界研究的熱點之一。電源的小型化、減輕重量對便攜式電子設備(如移動電話,數字相機等)尤為重要。使變頻電源小型化的具體辦法有:
      (1)高頻化。
        為了實現電源高功率密度,必須提高PWM變換器的工作頻率、從而減小電路中儲能元件的體積重量.
      (2)應用壓電變壓器。
        應用壓電變壓器可使高頻功率變換器實現輕、小、薄和高功率密度。壓電變壓器利用壓電陶瓷材料特有的“電壓-振動”變換和“振動-電壓”變換的性質傳送能量,其等效電路如同一個串并聯諧振電路,是功率變換領域的研究熱點之一。
      (3)采用新型電容器。
        為了減小電力電子設備的體積和重量,必須設法改進電容器的性能,提高能量密度,并研究開發適合于電力電子及電源系統用的新型電容器,要求電容量大、等效串聯電阻ESR小、體積小等。

      關注點三:高頻磁與同步整流技術
        電源系統中應用大量磁元件,高頻磁元件的材料、結構和性能都不同于工頻磁元件,有許多問題需要研究。對高頻磁元件所用磁性材料有如下要求:損耗小,散熱性能好,磁性能優越。適用于兆赫級頻率的磁性材料為人們所關注,納米結晶軟磁材料也已開發應用。
        高頻化以后,為了提高變頻電源的效率,必須開發和應用軟變頻技術。它是過去幾十年國際電源界的一個研究熱點。
        對于低電壓、大電流輸出的軟變頻變換器,進一步提高其效率的措施是設法降低變頻的通態損耗。例如同步整流SR技術,即以功率MOS管反接作為整流用變頻二極管,代替蕭特基二極管(SBD),可降低管壓降,從而提高電路效率。

      關注點四:分布電源結構
        分布電源系統適合于用作超高速集成電路組成的大型工作站(如圖像處理站)、大型數字電子交換系統等的電源,其優點是:可實現DC/DC變換器組件模塊化;容易實現N+1功率冗余,易于擴增負載容量;可降低48V母線上的電流和電壓降;容易做到熱分布均勻、便于散熱設計;瞬態響應好;可在線更換失效模塊等。
        現在分布電源系統有兩種結構類型,一是兩級結構,另一種是三級結構。

      關注點五:PFC變換器
        由于AC/DC變換電路的輸入端有整流元件和濾波電容,在正弦電壓輸入時,單相整流電源供電的電子設備,電網側(交流輸入端)功率因數僅為0.6~0.65。采用PFC(功率因數校正)變換器,網側功率因數可提高到0.95~0.99,輸入電流THD小于10%。既治理了電網的諧波污染,又提高了電源的整體效率。這一技術稱為有源功率因數校正APFC單相APFC國內外開發較早,技術已較成熟;三相APFC的拓撲類型和控制策略雖然已經有很多種,但還有待繼續研究發展。
        一般高功率因數AC/DC變頻電源,由兩級拓撲組成,對于小功率AC/DC變頻電源來說,采用兩級拓撲結構總體效率低、成本高。
        如果對輸入端功率因數要求不特別高時,將PFC變換器和后級DC/DC變換器組合成一個拓撲,構成單級高功率因數AC/DC變頻電源,只用一個主變頻管,可使功率因數校正到0.8以上,并使輸出直流電壓可調,這種拓撲結構稱為單管單級即S4PFC變換器。

      關注點六:電壓調節器模塊VRM
        電壓調節器模塊是一類低電壓、大電流輸出DC-DC變換器模塊,向微處理器提供電源。
        現在數據處理系統的速度和效率日益提高,為降低微處理器ic的電場強度和功耗,必須降低邏輯電壓,新一代微處理器的邏輯電壓已降低至1V,而電流則高達50A~100A,所以對VRM的要求是:輸出電壓很低、輸出電流大、電流變化率高、快速響應等。

      關注點七:全數字化控制
        電源的控制已經由模擬控制,模數混合控制,進入到全數字控制階段。全數字控制是一個新的發展趨勢,已經在許多功率變換設備中得到應用。
        但是過去數字控制在DC/DC變換器中用得較少。近兩年來,電源的高性能全數字控制芯片已經開發,費用也已降到比較合理的水平,歐美已有多家公司開發并制造出變頻變換器的數字控制芯片及軟件。
        全數字控制的優點是:數字信號與混合模數信號相比可以標定更小的量,芯片價格也更低廉;對電流檢測誤差可以進行精確的數字校正,電壓檢測也更精確;可以實現快速,靈活的控制設計。

      關注點八:電磁兼容性
        高頻變頻電源的電磁兼容EMC問題有其特殊性。
        功率半導體變頻管在變頻過程中產生的di/dt和dv/dt,引起強大的傳導電磁干擾和諧波干擾。有些情況還會引起強電磁場(通常是近場)輻射。不但嚴重污染周圍電磁環境,對附近的電氣設備造成電磁干擾,還可能危及附近操作人員的安全。同時,電力電子電路(如變頻變換器)內部的控制電路也必須能承受變頻動作產生的EMI及應用現場電磁噪聲的干擾。上述特殊性,再加上EMI測量上的具體困難,在電力電子的電磁兼容領域里,存在著許多交叉科學的前沿課題有待人們研究。國內外許多大學均開展了電力電子電路的電磁干擾和電磁兼容性問題的研究,并取得了不少可喜成果。近幾年研究成果表明,變頻變換器中的電磁噪音源,主要來自主變頻器件的變頻作用所產生的電壓、電流變化。變化速度越快,電磁噪音越大。

      關注點九:設計和測試技術
        建模、仿真和CAD是一種新的設計工具。為仿真電源系統,首先要建立仿真模型,包括電力電子器件、變換器電路、數字和模擬控制電路以及磁元件和磁場分布模型等,還要考慮變頻管的熱模型、可*性模型和EMC模型。各種模型差別很大,建模的發展方向是:數字-模擬混合建模、混合層次建模以及將各種模型組成一個統一的多層次模型等。
        電源系統的CAD,包括主電路和控制電路設計、器件選擇、參數最優化、磁設計、熱設計、EMI設計和印制電路板設計、計算機輔助綜合和優化設計等。用基于仿真的專家系統進行電源系統的CAD,可使所設計的系統性能最優,減少設計制造費用,并能做可制造性分析,是21世紀仿真和CAD技術的發展方向之一。此外,電源系統的熱測試、EMI測試、可*性測試等技術的開發、研究與應用也是應大力發展的。

      關注點十:系統集成技術
        電源設備的制造特點是:非標準件多、勞動強度大、設計周期長、成本高、可*性低等,而用戶要求制造廠生產的電源產品更加實用、可靠性更高、更輕小、成本更低。這些情況使電源制造廠家承受巨大壓力,迫切需要開展集成電源模塊的研究開發,使電源產品的標準化、模塊化、可制造性、規模生產、降低成本等目標得以實現。實際上,在電源集成技術的發展進程中,已經經歷了電力半導體器件模塊化,功率與控制電路的集成化,集成無源元件(包括磁集成技術)等發展階段。近年來的發展方向是將小功率電源系統集成在一個芯片上,可以使電源產品更為緊湊,體積更小,也減小了引線長度,從而減小了寄生參數。在此基礎上,可以實現一體化,所有元器件連同控制保護集成在一個模塊中。

此文關鍵字:變頻電源技術未來發展方向

戴南不銹鋼 黃銅棒 po膜 魔術貼扎帶 全自動洗筐機 indiegogo 大理石平臺 黃酒 沼氣火炬 鋁板 白蘭地 海信空調維修電話 SF6氣體回收裝置 西安會議一體機 微動行程開關 不銹鋼板加工 mve液氮罐 潛水泵 鏈斗式提升機 四川檔案密集架 煤礦熱風爐 樹脂拉鏈 德力西防爆燈 中央除塵設備 液壓升降機 鐵書架 螺桿空壓機廠家 軟管廠家 滾珠絲桿維修 彩鋼巖棉夾心復合 半自動灌膠機 制沙機 網絡機柜 標牌 金蔥粉 合肥獵頭公司排名 生物有機肥 潮汐苗床

伦理片 成人a片 性交姿势 欧美图片 欧美av 性插图 伦理小说